Задача составления рациона (задача о диете)

Имеется два вида корма I и II, содержащие питательные вещества (витамины) S_1 , S_2 и S_3 . Содержание количества единиц питательного вещества в 1 кг каждого вида корма и стоимость 1 кг корма приведены в таблице 10.2.

Таблица 10.2

Питательные	Необходимый	Количество единиц питательного вещества в 1	
	минимум питательных	кг корма	
вещества	веществ	Корм І	Корм II
S_1	b_1	a_{11}	a_{12}
S_2	b_2	a_{21}	a_{22}
S_3	b_3	<i>a</i> ₃₁	a_{32}
Стоимость 1 кг корма (в руб.)		c_1	c_2

Необходимо составить дневной рацион, в котором содержание каждого вида питательных веществ было бы не менее установленного минимума, причем затраты на него должны быть минимальными.

Составим экономико-математическую модель задачи. Обозначим через $^{\chi_1}$ и $^{\chi_2}$ соответственно количество кормов I и II, входящих в дневной рацион. Принимая во внимание значения, приведенные в табл. 10.2, и условие, что дневной рацион удовлетворяет требуемой питательности только в случае, если количество единиц питательных веществ не меньше предусмотренного, получим систему ограничений

$$a_{11}x_1 + a_{12}x_2 \ge b_1, a_{21}x_1 + a_{22}x_2 \ge b_2, a_{31}x_1 + a_{32}x_2 \ge b_3.$$
 (10.4)

Кроме того, переменные

$$x_1 \ge 0$$
, $x_2 \ge 0$. (10.5)

Общая стоимость рациона (в руб.) составит

$$F(x) = c_1 x_1 + c_2 x_2$$
. (10.6)

Итак, экономико-математическая модель задачи: составить дневной рацион $\mathbf{X} = (x_1, x_2)$, удовлетворяющий системе (10.4) и условию (10.5), при котором функция (10.6) принимает минимальное значение.